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We have developed a three-dimensional anisotropic multigrid solver for simulating
nonlocal collisional electrostatic drift-wave turbulence in a tokamak with magnetic
shear. As an example, the solver has been used to obtain entire flux-surface solutions
of the nonlocal Hasegawa—Wakatani equations in the absence of curvature effects.
The implicit treatment of the parallel-gradient terms permits the use of a relatively
large time step. Considerable effort was made in the design of the implicit solver to
ensure that the presence of anisotropy does not lead to a significant degradation in
performance. The multigrid algorithm has several advantages over a pseudospectral
Poisson solver; most importantly, all nonlinear terms, including those in the Ohm’s
law, can be retained in a straightforward manner. Although in this work the solver is
illustrated using straightened tokamak (sheared slab) geometry, the object-oriented
construction of the code will facilitate the eventual inclusion of curvature terms
and the complete nonlinear reduced Braginskii equations, including ion thermal
dynamics. (© 2000 Academic Press

I. INTRODUCTION

Tokamaks are experimental toroidal devices for studying the feasibility of control
thermonuclear fusion as a relatively clean and abundant energy source for the future.
use a combination of magnetic and electric fields to confine plasmas at very high tem,
tures until thermonuclear fusion of the nuclei occurs. One of the major obstacles in der
strating the scientific feasibility of this technology is the dramatic reduction in confinem
that results from the heat and particle transport associated with small-scale turbulent fl
ations. The goal of modern plasma turbulence theory is to understand and ultimately cc
thisanomalous transport

In this work we describe a three-dimensional simulation of collisional electrostatic o
waves [1, 2]. These instabilities are thought to play a important role in the outer edge rec
of tokamaks, where the temperature is low enough for collisionality to dominate. -
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equations that describe drift-waves are nonlocal (the coefficients of the partial derival
vary in space) so that discrete Fourier transform methods cannot be used to invert the La
operator that arises. The curvilinear geometry, anisotropy, and the sheared magnetic
introduce further complications, all of which may be handled in a natural way witf
multigrid solver. The problem of computing turbulent transport in a tokamak reactor tl
provides an excellent example of the advantages of multigrid methods over convent
spectral methods.

We begin in Section Il with a general discussion of the geometry, equations, and boun
conditions for the Hasegawa—Wakatani drift-wave model. Then, in Section Ill, we desc
and benchmark our multigrid algorithm against a pseudospectral Poisson solver for a
version of the equations. Nonlocal simulation results of our multigrid code, in the abse
of magnetic shear, are presented in Section IV. Finally, in Section V, we present a simul
of a full flux surface for a straightened tokamak with magnetic shear. We conclude v
some final remarks in Section VI.

II. HASEGAWA-WAKATANI MODEL

A. Coordinate system.The volume of the tokamak edge region to be simulated li
between two torii of different minor radii (the volume of revolution of a poloidal annult
about the major axis). It is convenient to introduce a transformation that maps this torc
geometry into a rectilinear region described by Cartesian coordinates. In this straight
system, new terms representing curvature effects will then arise in the equations of mc
For simplicity these geometrical effects are neglected in this work; however, the ever
inclusion of curvature effects and magnetic field gradients, both crucial to physics of
ballooning-mode [3, 4], should be relatively straightforward.

In the straightened geometry, we represent the minor radius coordinai¢igypoloidal
direction byy, and the toroidal direction by. Tokamak magnetic fields are characterize
by both poloidal and toroidal components, so that the magnetic field lines twist arounc
surface of the torus. The amount of twist depends on the radial coordinte resulting
magnetic sheais an important damping mechanism for drift-wave turbulence. Since t
dynamics of drift-wave turbulence tends to vary only weakly in the direction of the magn
field, itis numerically advantageous to introduce a new coordinate systegi, z') that is
aligned with the magnetic field direction instead of the toroidal direction, suclz'tisaal-
ways parallel to the local magnetic fi@@d4—7]. For the case of the prototypical sheared fiel

B = Bo(Z — ax¥), @

the appropriate transformation is

X' =X, (2a)
Y =y+azx (2b)
Z =z (20)

Upon denotingx’, ¥, Z) by (x%, x%, x?), the contravariant basis vectags= dr /X'
corresponding to the coordinate transformation Eqg. (2) may be expressed as

& =X —azy, (3a)
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(3b)
aXf/, (3¢)
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whereX, ¥, andz are the Cartesian unit vectors in they, andz directions, respectively. The
numerical discretizations are then performed with respect to the computational coordit
(X', ¥, Z), using the contravariant bagis, €1, &).

Note thate; is in the direction of the magnetic field, so tHat= Be,. The other two
basis vectors lie in a poloidal plane. Since the thickness of the (straightened) anmnxilus
is much smaller than its extension inthe dominant effect of magnetic shear in Eq. (3
arises from therzterm. As is common practice, we therefore adopt the simplified transf
mation

& =X —azy, (4a)
e =Y, (4b)
& =2 (4c)

thereby capturing the lowest-order effect of the shear (in the inverse-aspect ratio).
corresponding metric tensor, with the covariant componejjts-¢€ - €, then reduces
to

1+a272 az O
g= az 1 0]. (5)
0 0 1

The inverse metric tensor, with componegts is

1 -z 0
gl=|-az 1+a222 0f. (6)
0 0 1

The covariant basis vectogs= g/l ej (summing over repeated indices) are found to be

e =%, (7a)
et = §—azk, (7b)
& =2 (7¢)

We may now compute the covariant derivative= € a/ax/‘ (the notation= is used to
emphasize definitions)

V=X 9 + zi Jr‘iJrii 8)
- T\ax “ay/ y ’

of which the part perpendicular fois just

N a3\, .0
VJ_iX<—+OlZ—> +Yoo (©)
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or, equivalently,

9 3 3 3
vV, = 1+ a?7%)—|. 10
1 eo(a -t 8y,)+el[azax, )ay/ (10)

We also define the component of the gradient parall@| ¥, =9/3Z .
The divergence of a vectdr may be expressed generally as

0 i
™ (g2A"), (11)

where in our casg = detg| evaluates to 1. The perpendicular and parallel divergenc
V. -AandV; - A, respectively, are thus

V.A= g—l/2

9 9
V, A= —A'+ Al 12a
L o + By (12a)
a
VA= — A% (12b)
4

B. Nonlocal equations. For nonlocal simulation of resistive drift-wave turbulence, w
normalize the coordinatég, y, z, t) to (ps, ps, L, er) and the total potential and density
fields(¢, n) to (Te/e, N). Hereps = cs/ i, Qi =eB/(m;c), s = (Te/m;)¥?, Teis the elec-
tron temperaturay; is the ion massl. | = ps[ B/(ecy;m]¥?, andn is some characteristic
density. In this normalization, the coupled set of equations for the potential and der
studied by Hasegawa and Wakatani [1] appear as

d vin
V. (anlqb) + VH . <V¢ — n) = D¢VJ_¢ (13a)
dn V”n . 2
FriE <V - T) = DnVin, (13b)
where
d 0
a a +2xV¢-V. (14)

To evolve Egs. (13) in the twisted coordinate system (2) we need to compute the den
weighted Laplacian

V.- (nV = (2 9 0 9 15
v = (o bapg oG vamz o gunaze 9

and theE x B advection velocity

. 9 99\ 9 99 d¢
V=2Zx Ve = e1<ax,+ 8y> (eo+aze1)ay,— ean+elaX, (16)

The form of the latter result is anticipated, in view of the scalar invariance of the advec
nonlinearityv - V under linear transformation.

C. Boundary conditions. In straightened tokamak coordinates, we impose a Dirichl
condition on the densitg = fi(x, v, 2),

ﬁ(Xminv Y, Z) = Nmax ﬁ(Xmax, Y, Z) = Nmin V¥ Y, Z. (17)
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This prescription appears also as a Dirichlet condition if we expressi(x’, y', Z) in the
twisted coordinates (2),

n(x{mn, y/v Z') = Nmax, n(xr/nax’ y/, Z) =Nmin V y’, Z. (18)

Inimposing these density values at #tidboundaries, one must be careful to avoid introdut
ing artificially large density gradients. This can be accomplished by adopting a boun
condition ong that is compatible with the particle fluxes required to maintain the impos
density differential. Upon noting that Eq. (18) is consistent with the requirement of z
E x B advection in the directios; (=) at thex’ boundaries, we stipulate that e' =0

at both boundaries, so that the advection at the boundaries is purely & theection.
Equation (16) then requires that

8 / J /
dKmae Y-Z) =0 VY., Z. (19)

8 ! /!
¢(Xminsysz/)=09 W

ax

Aself-consistenE x B velocity (physically responsible for maintaining the imposed densi
profile) then arises naturally from this Neumann boundary conditigninthex’ direction?
In y andz, the boundary conditions on the state veétes (¢, n) are doubly periodic:

U(X, Ymin, 2) = U(X, Ymax 2) VX, z (20)
and
O(Xs ys Zmin) = 0(X9 y9 Zmax) V Xv y (21)

Upon expressingi(x, y, 2) =u(xX’, ¥, Z) the transformed boundary conditions are foun
to be [4-6, 8]

UuX's Yoins Z) = U(X', Yrnax Z) vx,Z (22)
and
U(X/, y/’ Z;nin) = U(X/’ y/ + ax,(z;nax - Zlmin)v Zlmax) v X/’ y/~ (23)

In the numerical implementation, linear interpolation is used to implement the pare
boundary condition (23).

D. Local approximation. In many simulations of the Hasegawa—Wakatani equatior
the restriction =1+ L;l(x — Xp) + i (wherexg is thex-coordinate of the center of the
box, X — g <« Ly, andfi « 1) is imposed to allow Egs. (13) to be approximated by

d o

avﬂb + V(¢ — ) = DyVi, (24a)
dni o o _
Gt V(¢ — ) = DaVIA+ L gy (24b)

In practice, itis convenient in the implicit solver discussed below to use a Dirichlet conditionihdirection
for both¢ andn. The Neumann boundary ahis enforced only when evaluating the perpendicular derivative
in the nonlinear source routine; the computed boundary values are then used to satisfy the Dirichlet con
required by the implicit solver during subsequent time steps.
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The code described in the following section permits the solution of the full equations (:
allowing it to be used to obtain self-consistent turbulence-driven profiles. However,
extra terms in Egs. (13) not present in Egs. (24) may be switched off (and the diamag!
termL ¢, enabled) to facilitate comparison with other local simulations.

I1l. NUMERICAL IMPLEMENTATION

The coupled equations Eq. (13) are solved as an initial value problem, using a gen
purpose object-oriented code calteei ad, written in Ct*. The kernel routines of this code
implement operations that are common to a wide class of dynamical problems, for exar
parameter input, parsing, generic integration algorithms, dynamic-time step adjustme
restart facility, and error handling. Further detailsTefiad will be described elsewhere.

A. Finite differencing. For the purposes of numerical discretization, Egs. (13) m:
be rewritten in a flux-conservative form by exploiting the solenoidal nature oEtheB
velocityv=2 x V¢,

9 Vin
Vi (nﬁvm) + VL VL (Wi + VY (Vu¢ - T)
=DyVip — H{Vig}. (25a)
2;_? +Vi-(vn)+ V- (V” - ?) = DnVin — Hy{n}. (25b)

Besides having better conservation properties, this form can be expressed relatively si
in our twisted coordinate system, with the effect of shear entering explicitly only throt
the vV, operator, given in contravariant form by Eqg. (10).

The velocity-dependent hyperviscosity operatrintroduced in Egs. (25) minimizes
the range of scales devoted to modeling small-scale dissipation. It is designed to abso
directly cascading enstrophy and internal energy at the grid scale in a manner that emt
(in one dimension) the stabilizing effect of an upwind scheme on convective equati
Following Ref. [3], we evaluate the spatial derivatives in Eq. (25) to fourth order and ad
the hyperviscosity operator

. ad B
HV = H <UX, AX, ax) —+ H (Uy, Ay, ay) s (26)
where
9 9 RE
H JAX, — )| = nAXP— —. 27
(Ux 3X> 1% 9% [ux| %3 ( )

However, the hyperviscosity was implemented here to higher order than in Ref. [3]
writing it as a correction to the perpendicular fluxes. The third-order derivatives appea
in these flux corrections were evaluated to fourth-order using the formula

1
F”(x) = m[—F(x —2A)+2F(x — A) —2F(x+ A) + F(x + 2A)].  (28)

The valueyn = 0.25 was found to be sufficient to avoid nonlinear convective instability
all cases.
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B. Time-stepping algorithms.The codeTriad currently defines the following general-
purpose integration algorithms: first-order Euler, a second-order Predictor—Corre
method, second-order Leapfrog, second-order Runge—Kutta, fourth-order Runge—k
and a fifth-order Cash—Karp Runge—Kutta integrator. With the exception of the Ei
method, all of these schemes supply a mechanism for dynamic adjustment of the
step based on an internal error estimate.

To avoid unnecessary restriction of the time step by the parallel-gradient termsin Eq.
we treat these terms implicitly with a trapezoidal approximation. Since this part of
scheme is only second-order accurate in the time step, it is reasonable to adopt a se
order scheme as the integrator for the perpendicular dynamics as well. Another re
for not using a higher-order integration algorithm is that the convergence of the anisotr
Poisson solver described in Subsection 111.C tends to improve as the coefficient of the pa
derivative, which is proportional to the time step, is reduced. The larger time step that w
be afforded by a higher-order integration algorithm is therefore not necessarily desira

For pedagogical reasons, we begin the discussion of our semi-implicit time-stepping :
rithm by considering theth time step, with size, of the Euler method applied to Eq. (13),

V- (aVid) 4+ Ly (Vi — M
1Ny L¢|)+§ < ¢|—n—i>

T V”ni,l
=V, -(N_1Vigi_1) — EV" : (V¢i1 — )

Ni—1
— TV - (M_12 X Vi _1-VVidi_1) + D Vi1, (29a)
N+ oy, . (v o — Viniy _ no1—2v,.(v Gi1— Vini-1
[ 2 I [ Pi n i—1 2 I 1Pi-1 N1

—12x V¢i_1-Vni_1+1D,V3ni_1.  (29b)

Upon definingu = (¢, n) and the transformation

Vi-(MioiVig) + 59 - (Vi —n~tvyn)
T(v)u= , (30)
n+ 5V (Vi —n~tvn)
we may write Eq. (29) in the compact form
T(OU =T (—1)Ui-1+ 151, (31)

where the advective nonlinearities, treated explicitly, are incorporated into the sgurc
along with the perpendicular dissipative terms. A generic integration routine may thu:
used to integrate Eq. (13) upon first transforming; to the new variabld (—t)u;_1, ap-
plying the integration method, and finally transforming back with the inverse transforma
7~%(7). The implementation of this inversion operator is described in the next section

The generalization of Eq. (31) to a second-order predictor—corrector scheme is stra
forward,

T@) 0 =T(—1)Ui_1 +1S_1, (32a)
T(ou = T(—)Ui_; + §<s_1 +3). (32b)
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where the source teré is evaluated at the intermediate poiint? Normally, evaluations
of the transformatior?” and 7! are the most computationally expensive parts of th
calculation. Other integration algorithms can be written in a similar manner, such as
following second-order leapfrog scheme:

Tl =T (—1)0i_1+ S 1, (33a)
T(Ou = T(-D)Ui_1 +1S_1. (33b)

Note that the predictor—corrector algorithm will typically execute somewhat faster tt
the leapfrog scheme since it requires one less forward transforniagien) but the same
number of inverse transformatios 1 (z).

All of the generic integration routines ifriad can in this manner be performed in a
transformed space; the user need only supply the transformation routine and its inver

C. Anisotropic Poisson solver.The inverse transformation in the previously describe
time-stepping algorithm at théh time step can be accomplished by inverting the anisotrof
elliptic operator

vin
Vi -(Ni—1Vigi) + %VH : <V¢i - ni) =12, (34a)
Vi n
n + %VH . <V¢>i - m) = fi". (34b)

This operator, linear im; and¢;, is obtained by adding the small quantity, - [(ni‘l -
ni‘,ll)VHni]/Z to both sides of each equation in (29). (In practice, this small correction
the explicitly treated source term can simply be ignored.)

Equations (34) are inverted with an anisotropic multigrid solver. This solver, which
based on ay-zebra-surface Gauss—Seidel smoother (described in Appendix A), in t
requires the solution of a tridiagonal equationfipland an equation fap; of the form

[Vi-(ni_1Vy) +€lgi = fi, (35)

wheree is a factor proportional to the time step (the tesfh corresponds in Eq. (A4) to
the central term-2¢; ; that is moved to the left-hand side and treated implicitly). Solutior
of this 2D anisotropic Poisson-like equation are obtained with a secondary multigrid so
based on ary-zebra-line Gauss—Seidel tridiagonal smoother, discussed in more deta
Appendix A and in Refs. [9-11].

A single V-cycle iteration of the fulky-zebra-surface Gauss—Seidel multigrid solve
typically reduces the root-mean-squaibefect(residual) by a factor of 4 or 5. Because
the solver is initialized with the values computed during the previous time step, we |
in practice that two iterations of the solver are sufficient to yield an accurate dynam
evolution of the Hasegawa—Wakatani equations. This was tested by comparison witl
solutions obtained (i) using many multigrid iterations per time step and (ii) for the lo
equations, using the pseudospectral solver described in the following subsection.

The results of the second test are depicted in Figs. 1 and 2 foxa884« 16 grid corre-
sponding to a physical domain with dimensiong3& 18ps x 38L, using the dissipation

2For the corrector in Eq. (32b) to be strictly second-order,rthe factor in Eq. (30) should be replaced by
(ni_1 +ni)/2; however, in practice the error introduced in Eq. (32b) is negligible.
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FIG. 1. Comparison of the total energy denskyfor identical (a) pseudospectral and (b) multigrid runs
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conditions (18) and (19) in thedirection.

parameter®, = D, = 10-3. We compare the total turbulent energy denBity ((V, ¢)%+

fi?) and particle flux" = —(nd¢/dy), where(-) denotes a volume average, for identica
pseudospectral and multigrid runs, in the absence of magnetic shear and using pe
boundary conditions in all three directions. We also depict both local and nonlocal m
grid versions of these same runs using the Neumann/Dirichlet conditions (18) and (1
thex direction. The chosen density scale lendth = 34ps, satisfies the local approxima-
tion only marginally and for this reason the nonlocal simulations depicted in Figs. 1 ar
depart from the other three runs, which assume locality. One sees that even for small i
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conditions (random values chosen uniformly from the intervdl§—3, 10~3]), the variation
with x of the coefficienn— in the Ohm’s Law term of Eq. (13b) has a significant effect o
the linear dynamical evolution.

D. Pseudospectral solver.Testing and benchmarking of the multigrid solver were fa
cilitated with a pseudospectral option, which uses fast Fourier transforms (FFTs) to in
the linear operator in Eqgs. (24). This option is available only for the local equations.
nonlinear and diamagnetic terms, however, are computed with finite differencing, jus
with the multigrid solver; this avoids the need to introduce de-aliasing points in the F
buffers and keeps the FFT sizes as small as possible. The linear dissipation terms m
computed either in the spatial domain, by finite-differencing—just as with the multig
solver—or by multiplication in the Fourier-transformed domain.

E. Near-singular operators. With periodic boundary conditions iandy, the opera-
tor (35) is singular whem = 0; the solution fog is then determined only up to an arbitrary
function ofz. It is therefore not surprising that for these boundary conditions the efficier
of the multigrid algorithm dramatically degradescas- 0. However, there is a straightfor-
ward procedure to add the correetiependent solution to the solver result. We illustrat
the procedure under the local approximation (for our application this is the only case w
periodic boundary conditions ixare relevant).

Let us rewrite the local version of Eq. (34) (replacimg; by unity) as

¢ fy
L = . 36
() - @
Because of the near-singularity of the perpendicular part of this operator, the solver re
a solution(&, n) approximating not the exact solutigs, n) but the contaminated solution

(¢ +9(2), n+ h(2)). At each level of the multigrid hierarchy, the unknown functigiis)
andh(z) may be computed by applying to the solver result and averaging oweandy,

EE, (), ()@
1)/ xy fn//xy  \h+3tv2g—-h)

which, in terms of the defect,, d,) = L(£, n) — (fy, fn), leads to the equations

h=(dh— d¢>xy7 (38&)
T
SVIH@ =) = (dy)y. (38b)
Evaluation ofg requires the inversion of a 1-dimensional Poisson equation, which is rea

accomplished with a tridiagonal solver. Upon subtracting the corre¢tioh) from the
solver result, one obtains an iteration that converges to the true sofgtion.

F. Performance. Our algorithm has distinct advantages relative to a fully pseudosp
tral Poisson solver. While on a scalar machine the computation time for a single itérat
of the multigrid solver applied to Egs. (24) is about the same as for a pseudospectral «

3 One or two iterations of the solver is normally adequate, as described in Subsection I11.C.
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a multigrid solver should parallelize more effectively over a distributed memory arc
tecture. This is because the implementation of a multidimensional fast Fourier trans
on a distributed memory system effectively requires a matrix transposition, entailing t
communication costs. A multigrid algorithm can also handle more realistic boundary ¢
ditions, such as Eqgs. (18), (19), and (23). Furthermore, all nonlinear terms can be ret:
in a straightforward manner; in contrast, pseudospectral solvers require linearization c
n;_, factor appearing in Eq. (35). Finally, we mention that for a large number of mgdes
the scaling of the multigrid method)(N), is formally better than that of the fast Fouriel
transform,O(N In N).

While the execution time for a single time step of our semi-implicit algorithm is n
substantially greater than that for an explicit code (based on a 2D Poisson solver), we
found that the implicit treatment of the parallel-gradient terms permits a larger time ¢
(typically more than a factor of 10 larger). For the nonlocal reference case depicted in Fi
and 2, we compared the results obtained with explicit and implicit treatment of the par:
terms. We found no significant differences in the evolution of the flux and energy den
The fact that the explicit scheme required a time step 25 times smaller than that req
by the implicit method is a signature of the existence of a strongly damped mode. Ins
of exactly resolving the decay of this mode, the implicit algorithm makes sure that it ne
gets excited.

In the interest of easy program maintenance and reusable code, the object-oriEhtec
programming language appeared to be an excellent choice for this project. The pe
mance of this language was carefully evaluated before proceeding. It was found tt
certain programming practices were adhered to (such as avoiding constructor call
dynamic memory allocation in the middle of loops), the performance6f €an equal
that of code written in Fortran. For example, an efficient array class writter{ thwzas
used to compute a Laplacian; the speed of the routine was found to be within 8% o
performance of optimized Fortran-77 code. Time profilingfeiad showed that by far
the most computationally expensive part of the code is the computation of a modifie
dimensional Laplacian operator in the defect routine of the primary multigrid solver.
benchmarking this time-critical section of code in botfifCand Fortran, we were able to
establish that there is no significant loss of performance in usfigfer this application.
In a few places, it was nevertheless necessary to hand-optimize operations on user-d
objects by expressing them explicitly in terms of operations on their components (i
writing a complex equation explicitly in terms of its real and imaginary parts). The origin
this problem is that most existing'C compilers currently write intermediate user-define
objects to memory instead of retaining them where possible in CPU redfsters.

IV. NONLOCAL SIMULATION

In Figs. 3-5 we illustrate typicaky-cross sections of the electrostatic potential ar
density that were obtained with the multigrid solver applied to the Hasegawa—Wake

4 One exception to this is the KAI'T' to Ctranslator, which has been designed for high-performance compu
ing and is available for many workstations and also for parallel computers like the Cray T3E. The authors
that future improvements to native'® compilers will allow class data to be retained in CPU registers, allowin
time-critical sections of code to be expressed compactly, in accordance with the object-oriented philosophy
c** language and without the need for intermediate translators.
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FIG. 3. Nonlocal simulation o (left) andn (right) att = 10002;. Black denotes low values.

FIG. 4. Nonlocal simulation of (left) andn (right) att = 3000;.
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FIG.5. Nonlocal simulation o (left) andn (right) att = 1.2 x 10°Q;.

251

model in the absence of magnetic shear. These snapshots correspond to the linear,

lent, and final saturated sheared-flow evolutionary stages, respectively. The stacked fi
correspond to four differerz values. A 127 64 x 4 grid was used to model a box of
size 36 x 18ps x 38L, using the boundary conditions of Subsection II.C, the dissip
tion parameterd, = D, =10"*, and the density scale length and initial conditions c

Subsection 11I.C. The density and potential profilest at1.2 x 10*Q; are depicted in

Fig. 6.

2L

FIG. 6. Density and potential profiles corresponding to Fig. 5.

40
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V. FLUX SURFACE SIMULATION

Because of the enormous number of poloidal modes that are required for a full
surface treatment of drift-wave turbulence in a tokamak, most previous simulations t
been confined to a narrow flux-tube region enclosing a magnetic field line as it wi
around the torus. LeBr and Bp be the strengths of the toroidal and poloidal magnet
fields andR anda be the major and minor radii of the tokamak, respectively. If the rat
g=aBr/(RBp) (for which the isosurfaces are flux surfaces) is a rational numiyer,
then after following the field linen times around the toroidal direction, the field line will
have maden poloidal circuits. To avoid following the field line the full periodicity length
2rm R, flux-tube simulations follow the field line only for one poloidal circuit, a distanc
of 27qR, somewhat misleadingly known as tbhennection lengthAfter one connection
length the field line does not return to the same toroidal location (untesk) and therefore,
since the turbulence correlation length in the parallel direction is typically larger than
connection length (see Fig. 8), a number of researchers [4, 6, 12] have intreckieaded
flux-tube modelsin which the flux tube is followed further, a least a parallel correlatic
length. For example, Zeilest al. followed the field line three connection lengths befor:
they reconnected the flux tube to itself [4]. In effect, they followed the field line for abc
tentoroidal circuits, whereas in a full flux surface simulation, only one toroidal circuit mt
be made.

Recognizing that this savings of roughly an order of magnitude in the toroidal res
tion could be transferred to the poloidal direction, we opted to use our efficient multic
solver to model an entire flux surface and thereby demonstrate the feasibility of no
cal full flux surface simulations of the (admittedly overly simplistic) Hasegawa—Wakat
equations on a high-performance workstation. We adopted parameters characteris
the outer edge region of a deuterium L-mode plasma in the ASDEX Upgrade tokar
for which R= 165 cm,a=50cm,B =2.2 x 10* gaussJ. = 130eV,n=6.0 x 1012cm~3,
dn/dx=2.4 x 10"2cm~*, andq = 3.5. The effective atomic numbéi; was taken to be 4.
These parameters lead to the derived vafyes 0.075cm,L; =80.4cm,and., = 2.5cm.
The boundary values of the densityyin =0.63 andnmnx=1.59, were chosen so that
the geometric mean of the normalized density is unity. A<38096x 4 grid correspond-
ing to a physical domain with 3 x 4096os x 13L (2.4 cmx 307 cmx 1045 cm) was
adopted.

The simulation was initialized with random values chosen uniformly from the inten
[-1073,10~%] and started with zero magnetic shear and the dissipation paranieters
D, =10"%. To speed up the initial evolution, the coefficient in front of the parallel tern
(which restricts the linear time step) was temporarily reduced@01) until the nonlinear
phase was reached. The simulation was then run further with the correct parallel coeffi
of unity, until the state shown in Fig. 7 was obtained. The long parallel correlation lenc
of the turbulence are evident in Fig. 8, where the param&ter(Z’ — Zmin) /(Zmax — Zmin)
measures the relative distance along one toroidal circuit of the field line. Although
curvature effects or magnetic field gradients were included in this simulation, we emphe
the doubly periodic boundary conditions by plotting the results in toroidal geometry, us
the untwisted coordinate&, y, z). For presentation purposes, the poloidal direction
compressed by a factor of 4 and the aspect ratio is reduced.

The resulting nonlinear state was then used to initialize a flux-surface run with magr
shear, taking the shear parametet 275/[q(Zmax — Zmin)]- Given our normalized parallel
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FIG. 7. Toroidal projection of the electrostatic potential for a slab flux-surface simulation without magn
shear. Black denotes high potential.

simulation lengtlzmax — zmin = 13, one computes for the typical shear coefficiestl that

a =0.14. For these parameters Egs. (13) are linearly stable. However, once in a nonl
state, the magnetic shear only partially stabilizes the turbulence, as seen in Figs. 9 ar
the turbulent particle flux is diminished, but not eliminated, upon switching on the m
netic shear at= 0. This illustrates the well-known nonlinear instability mechanism of tt
Hasegawa—Wakatani equations [12—14]. The results were qualitatively similar whethe
held the dissipation parameters fixed or reduced them both by a factor of 1000 to del
strate that the magnetic-shear damping mechanism is effective even when the dissiy
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FIG. 8. Density and potential parallel autocorrelation functions corresponding to Fig. 7.
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FIG.9. Evolution of the total energy densify and turbulent flux density for a flux-surface simulation upon
turning on the magnetic sheartat 0.

is very weak (as it is physically). We display in Fig. 12 the self-consistent density and
tential profiles and observe in Fig. 11 the extremely long parallel correlation lengths in
final turbulent sheared-flow state. On a single-processor 600-MHz Digital Alpha PC164
workstation, the portion of the simulation shown in Fig. 9 required 29,000 adaptive ti
steps, 300 CPU hours, and 200 MB of memory.

FIG. 10. Toroidal projection of the electrostatic potential for the sheared-slab simulation in Fig. 9
t =3 x 10°Q;. Black denotes high potential.
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FIG. 11. Density and potential parallel autocorrelation functions corresponding to Fig. 10.

VI. CONCLUSIONS

An efficient nonlocal anisotropic multigrid solver has been successfully implemer
and tested for the Hasegawa—Wakatani Model, using a twisted coordinate system to e
the extremely long scale lengths along the magnetic field. In addition to illustrating the
vantages of multigrid methods for the solution of partial differential equations, an impor
purpose of this work was to demonstrate that nonlocal full flux surface calculations of
Hasegawa—Wakatani equations are possible on modern high-performance workstatio
a flux-surface model, the resolution that one saves in following a single toroidal circ
instead of several connection lengths, can be put into the poloidal direction. The pat
correlation lengths that were obtained in our simulation are evidently much longer th:
connection length; however, the inclusion of ballooning physics arising from the negle
magnetic curvature and gradient terms may change this picture.

As afinal comment, we note that it appears to be possible to generalize the solverto h
electromagnetic effects. In future work, we would like to explore this further, along w
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FIG. 12. Density and potential profiles corresponding to Fig. 10.
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incorporating curvature effects and the complete nonlinear reduced Braginskii equettion
Ref. [15]), including ion thermal dynamics, into the algorithm. It should be pointed out tl
realistic electromagnetic computations of tokamak edge turbulence, such as those fol
Ref. [16], necessitate the solution of equations much more complicated than Eqgs. (13
require much longer computation times. Moreover, to gain a complete understandir
the underlying physics, many such runs will be required. Since the flux-surface simula
of the Hasegawa—Wakatani equations reported in this work is close to the limit of whe
practical on a modern workstation, more realistic simulations of tokamak turbulence
undoubtedly require the use of massively parallel computers.

APPENDIX A: MULTIGRID CLASS LIBRARY

A C*7 class library has been developed around a core recursive multigrid routins
facilitate the development of one-, two-, and three-dimensional multigrid solvers (sucl
the two- and three-dimensional solvers used in this work). The implementation of a comy
multigrid algorithm requires the specification of four principal components: these are
smoother, defect, restriction, and prolongation routines [9].

Default 3'-point restriction and prolongation algorithms, whekrés the dimension of
the problem, are defined in the class library. The smoother and defect, on the other |
must be specified by the user since these are problem dependent. However, some ass
in developing a smoother is provided in the class library. Generally the most effec
smoothers are the pointwise or blockwise Gauss—Seidel iterations. Once the Gauss—
iteration for a given operator is coded, the user may select from the class library eitt
lexicographical, red-black, or line- or surface-zebra ordering of the variables, as desc
below [9]. A Jacobi iteration is also provided. A variety of predefined boundary conditic
are available in each direction and the user may also define more general conditions, st
Eq. (23). The mesh constructed by the initialization routines is based on the type of bour
conditions for each direction (Dirichlet, Neumann, periodic, mixed Neumann/Dirichle
as illustrated in Fig. 13.

1. Smoothing Iterations

Let us illustrate several of the predefined smoothers of our multigrid class library us
the pedagogical example of a centered finite-difference scheme for the two-dimens
isotropic Poisson equatiovi? ¢ = f,

Gt +dij1—db |+ it din = fijA% (A1)

whereA is the grid size, here assumed for simplicity to be the same in both directions.

(a) Jacobi. The Jacobi iteration attempts to obtain a solution to the Poisson equa
by relaxing a heat equation. Thia damped Jacobi iteratiofor Eq. (Al) is given in terms
of the previous guess 1,

d =0~ +o -4l et — A, (A2)

where the artificially introduced time stepcontrols the rate of numerical relaxation. To
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(a) Dirichlet Boundary Conditions

x=0 x=1
X 1=0
X =1
X =2
(o) Neumann Boundary Conditions
x=0 x=1
X X 1=0
X X =1
X X =2
(c) Periodic or Mxed Dirichlet/Neumann Boundary Conditions
x=0 x=1
X I=0
X =1
X =2
(d) M xed Neumann/Dirichlet Boundary Conditions
x=0 x=1
X X I=0
X X =1
X X I=2

FIG. 13. Grid configurations used for (a) the Dirichlet boundary conditig®8) = ¢o, ¢ (1) = ¢1; (b) the
Neumann boundary conditions (0) = ¢’(1) =0; (c) the periodic boundary conditiors(0) =¢ (1), ¢'(0) =
¢’ (1) orthe mixed Dirichlet/Neumann boundary conditign®) = ¢o, ¢’ (1) = 0; (d) the mixed Neumann/Dirichlet
boundary conditiong’(0) = 0,¢ (1) = ¢,. Adot denotes a computational grid point and an X designates an inact
(ghost) point used for enforcing the boundary conditions.

obtain an effective smoothing iteration, the valueeofnust be chosen carefully, basec
on an analysis of the eigenvalues of the operator being inverted (for the one-dimens
Poisson equation, the optimal value is one-half of the Courant limit for the correspont
one-dimensional heat equation). This is discussed further in Ref. [9]. However, the Ga
Seidel iteration discussed next requires no stability parameter and, for elliptic operato
generally found to be a more effective smoother than the Jacobi iteration.

(b) Pointwise Gauss—SeidelThepointwise Gauss—Seid&ration for Eq. (Al) is given
by

¢ = (i-vj +Bij-1+ i1+ i) — fijA%) /4 (A3)

It is obtained from Eq. (A1) simply by solving fa# ; in terms of f; ; and the other grid
values. Unlike for the Jacobi iteration, the ordering of the variables clearly affects the re:



258 BOWMAN, ZEILER, AND BISKAMP

since the updated values ¢fare immediately available in subsequent evaluations of tl
right-hand side.

(c) Blockwise Gauss—SeidelA blockwise Gauss—Seidieration may also be con-
structed, by solving Eq. (A1) for an entire block of variables (such as a row or colun
using a simpler block-solver (perhaps based on an explicit solution or a lower-dimensi
multigrid solver). For example, theline Gauss—Seidéeration is defined by

Gi1j—Abij+ it = Fi AT —dij1— b1 (A4)

As part of each iteration, an efficient tridiagonal solver can be used to update the valu
an entire row simultaneously. Likewise, thdine Gauss—Seiddéeration is defined by

Gij1—Adij+dijari= i A2 =1 — by (A5)

Blockwise solvers like these, especially when combined with zebra-line ordering,
particularly useful for anisotropic problems, where the partial derivatives in one direct
dominate. In these situations, the blocks should be chosen to be lines in the dom
direction. Because it solves Eq. (A1) explicitly in the direction of dominance, the res
ing blockwise Gauss—Seidel iteration is then able to relax the equation efficiently in
subdominant direction. For example, for a three-dimensional operator possessing ext
anisotropy in thez-direction, one would choose the blocks toxXse/ planes, using a zebra
ordering of thex—y surfaces.

2. Domain Orderings
We now describe a few of the most useful orderings for second-order elliptic proble

(a) Lexicographical. This simplest ordering of th@, j) values corresponds to the loop

for(i=0; i < nx; i++)
for(j=0; j < ny; j++)
GaussSeidel(i, j).

That is, one repeatedly applies the pointwise Gauss—Seidel iteration (A3), denoted he
GaussSeidel(i, j), scanning through ali, j) pairs in rows, with the index increasing
most rapidly.

(b) Red-black. Inthis ordering, the points are divided into two sets. One set, consist
of points (i, j) such thati + j is even, is labeled “red” and its complement is labele
“black.” Equation (A3) is first applied to all of the points in the red set:

for(i=0; i < nx; i += 2)
for(j=0; j < ny; j += 2)
GaussSeidel(i, j)
for(i=1; i < nx; i += 2)
for(j=1; j < ny; j += 2)
GaussSeidel(i,j).
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On a second pass, the iteration is then applied to each of the points in the black set:

for(i=0; i < nx; i += 2)
for(j=1; j < ny; j += 2)
GaussSeidel(i,j)
for(i=1; i < nx; i += 2)
for(j=0; j < mny; j += 2)
GaussSeidel(i,j).

(c) Line-zebra. Thex-line zebraordering is defined by

for(j=0; j < ny; j += 2)
XGaussSeidel(j)
for(j=1; j < my; j += 2)
XGaussSeidel(j),

whereXGaussSeidel(j) is thex-line Gauss—Seidel iteration (A4). Similarly, tlyeline
zebraordering is defined by

for(i=0; i < nx; i += 2)
YGaussSeidel (i)
for(i=1; i < nx; i += 2)
YGaussSeidel (i),

whereYGaussSeidel(i) is they-line Gauss—Seidel iteration (A5).

(d) Surface-zebra. For three-dimensional problems, one can define surface-zebra
derings such as they-surface zebrardering

for(k=0; k < nz; k += 2)
XYGaussSeidel (k)
for(k=1; k < nz; k += 2)
XYGaussSeidel (k) ,

whereXYGaussSeidel(k) is anxy-surface Gauss—Seidel iteration, in which the block
are chosen to be&-y planes. This ordering is useful for problems possessing extre
anisotropy in thez-direction. The solution on each-y plane would normally be obtained
with a secondary two-dimensional multigrid solver.

3. Boundary Conditions

We now describe the predefined boundary conditions corresponding to the one-dil
sional grids depicted in Fig. 13. Analogous routines, which may be combined to yie
wide variety of boundary conditions, are available in higher dimensions.

(a) Dirichlet conditions. The multigrid package assumes that the desired Dirich
boundary conditions are initially applied to the approximate solution given by the u:
Therefore, no additional code needs to be executed to enforce Dirichlet boundary c
tions in the multigrid algorithm.
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(b) Neumann conditions.The following boundary conditions are applied to the solutio
and defect:

Uo = Uy, (A6)
Un—1. (A7)

Un+1

Heren is the number of active computational points; including the two boundary poi
there are a total afi + 2 points.

(c) Mixed Dirichlet/Neumann conditions.There are two situations, one with Neumani
boundary conditions atyn,

Up = Up, (A8)
and one with Neumann boundary conditionxay,
Unt+1 = Up—1. (A9)

(d) Periodic conditions. Periodic boundary conditions are implemented with the fo
lowing assignments:

Up = Up (A10)
Uny1 = Ug. (All)
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